Hydrolysis of 11-cis- and all-trans-retinyl palmitate by homogenates of human retinal epithelial cells.
نویسندگان
چکیده
The retinal epithelium plays an important role in the storage and metabolism of retinoids in the eye. Studies were conducted to examine the enzymatic hydrolysis of retinyl esters by human retinal epithelial cells. Homogenates prepared from these cells were found to hydrolyze both the 11-cis- and all-trans-isomers of retinyl palmitate. Retinyl ester hydrolysis was time-, protein-, and pH-dependent. The 11-cis isomer was hydrolyzed at a rate which was approximately 20 times greater than that of the all-trans isomer. The 11-cis-retinyl palmitate hydrolase activity did not require detergents, unlike the all-trans-retinyl palmitate hydrolase activity, which required detergents for activity. The 11-cis-retinyl palmitate hydrolase activity was maximally active with the addition of 1.0% sodium taurocholate at about pH 8.5, was abolished by incubation at 50 degrees C for 10 min, and was quantitatively recovered in the pellet after centrifugation at 100,000 X g for 1 h. The rate of hydrolysis of 11-cis-retinyl palmitate became saturated with increasing concentrations of 11-cis-retinyl palmitate; under the assay conditions employed, the hydrolase activity had an apparent Km of 19 microM toward 11-cis-retinyl palmitate. All-trans-retinol and 11-cis-retinyl did not affect the rate of hydrolysis of 11-cis-retinyl palmitate, and addition of all-trans-retinyl palmitate only weakly inhibited the 11-cis-retinyl palmitate hydrolytic activities. These data indicate that the human retinal epithelium possesses distinct activities for the hydrolysis of 11-cis- and all-trans-retinyl esters and raise the possibility that these activities may provide a means of distinguishing the stereoisomers of retinol in this tissue.
منابع مشابه
Comparison of retinyl ester hydrolase activities in bovine liver and retinal pigment epithelium.
Various properties of retinyl ester hydrolysis in the liver and the retinal pigment epithelium (RPE) have been studied, yet the relationship between the retinyl ester hydrolase (REH) activities in these tissues of the same species is not known. In the present study, REH activities in bovine liver and RPE microsomes were compared to explore potential biochemical relationships of retinyl ester me...
متن کاملSubstrate specificity of retinyl ester hydrolase activity in retinal pigment epithelium.
In the eye, hydrolysis of stored retinyl esters is catalyzed by retinyl ester hydrolase (REH) activities in retinal pigment epithelium (RPE) membranes. In the present study, biochemical analyses were conducted to determine the substrate specificity of these activities. Specific activities determined for hydrolysis of various retinol isomers of retinyl palmitate (9-cis-, 11-cis-, 13-cis-, and al...
متن کاملBile salt independent retinyl ester hydrolases in the bovine eye.
Homogenates of bovine neuroretina and retinal pigment epithelium (RPE) were incubated with 11-cis and all-trans retinyl palmitate to study retinyl ester hydrolysis. The highest activity was found in RPE when 11-cis retinyl palmitate served as substrate (Km = 7.8 microM and Vmax = 44.8 pmol/min/mg). This retinyl ester hydrolase (REH) had an optimum activity at acidic pH (pH 5), which is in contr...
متن کاملMuller cells of chicken retina synthesize 11-cis-retinol.
The amounts of endogenous retinyl palmitate, retinol and retinaldehyde were measured in the neural retina and retinal pigment epithelium (RPE) of predominantly cone (chicken), rod (rat) and more mixed (cat, human) retinae. The ratio of 11-cis to all-trans isomers of retinyl palmitate and retinol in the neural retina and the RPE increases progressively with the increase in diurnality of the spec...
متن کاملPreferential release of 11-cis-retinol from retinal pigment epithelial cells in the presence of cellular retinaldehyde-binding protein.
In photoreceptor cells of the retina, photoisomerization of 11-cis-retinal to all-trans-retinal triggers phototransduction. Regeneration of 11-cis-retinal proceeds via a complex set of reactions in photoreceptors and in adjacent retinal pigment epithelial cells where all-trans-retinol is isomerized to 11-cis-retinol. Our results show that isomerization in vitro only occurs in the presence of ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 262 1 شماره
صفحات -
تاریخ انتشار 1987